skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reinitz, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This manuscript presents an algorithmic approach to cooperation in biological systems, drawing on fundamental ideas from statistical mechanics and probability theory. Fisher’s geometric model of adaptation suggests that the evolution of organisms well adapted to multiple constraints comes at a significant complexity cost. By utilizing combinatorial models of fitness, we demonstrate that the probability of adapting to all constraints decreases exponentially with the number of constraints, thereby generalizing Fisher’s result. Our main focus is understanding how cooperation can overcome this adaptivity barrier. Through these combinatorial models, we demonstrate that when an organism needs to adapt to a multitude of environmental variables, division of labor emerges as the only viable evolutionary strategy. 
    more » « less